			ī
	<	1	7
		L	i
(U	1)

Question Booklet No.:		AGPG/2021					
	Register Number						

2021 GEOLOGY (P.G. Degree Standard)

Duration: Three Hours]

[Total Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. You will be supplied with this question booklet 15 minutes prior to the commencement of the examination.
- 2. This question booklet contains 200 questions. Before answering the questions, you shall check whether all the questions are printed serially and ensure that there are no blank pages in the question booklet. If any defect is noticed in the question booklet, it shall be reported to the invigilator within the first 10 minutes and get it replaced with a complete question booklet. If the defect is reported after the commendement of the examination, it will not be replaced.
- 3. Answer all the questions. All the questions carry equal marks.
- 4. You must write your register number in the space provided on the top right side of this page. Do not write anything else on the question booklet.
- 5. An answer sheet will be supplied to you separately by the room invigilator to shade the answers.

 Instructions regarding filling of answers etc., which are to be followed mandatorily, are provided in the answer sheet and in the memorandum of admission (Hall Ticket).
- 6. You shall write and shade your question booklet number in the space provided on page one of the answer sheet with BLACK INK BALL POINT PEN. If you do not shade correctly or fail to shade the question booklet number, your answer sheet will be invalidated.
- 7. Each question comprises of five responses (answers): i.e. (A), (B), (C), (D) and (E). You have to select ONLY ONE correct answer from (A) or (B) or (C) or (D) and shade the same in your answer sheet. If you feel that there are more than one correct answer, shade the one which you consider the best. If you do not know the answer, you have to mandatorily shade (E). In any case, choose ONLY ONE answer for each question. If you shade more than one answer for a question, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 8. You should not remove or tear off any sheet from this question booklet. You are not allowed to take this question booklet and the answer sheet out of the examination room during the time of the examination. After the examination, you must hand over your answer sheet to the invigilator. You are allowed to take the question booklet with you only after the examination is over.
- 9. You should not make any marking in the question booklet except in the sheets before the last page of the question booklet, which can be used for rough work. This should be strictly adhered to.
- Failure to comply with any of the above instructions will render you liable for such action as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

1.	Loca faces		211) can be	e in between which of the poles of given
	(A)	(001) and (011)	(B)	(001) and (110)
	(C)	(100) and (111)	(D)	(100) and (101)
	(E)	Answer not known		
2.		plane which lies tange	he plane ent to the r	of the projection is usually taken as north pole of the sphere of the spherical
		ection.	a	
	(A)	Vertical	(B)	Gently Inclined
	(C)	Horizontal	(D)	Steeply Inclined
	(E)	Answer not known		
3.	The	Olivine group of minerals are s	tructurally	
	(A)	Soro silicates	(B)	Neso silicates
	(C)	Ino silicates	(D)	Phyllo silicates
	(E)	Answer not known		
4.	Mn ₂	SiO_4 is the chemical composition	n of which	of the olivine group mineral?
	(A)	Forsterite	(B)	Fayalite
	(CV	Tephroite	(D)	Monticellite
	(E)	Answer not known		
5.	Pick	out the correct pair from the fo	ollowing:	
	(A)	Olivine - Single Salt		
	(B)	Fayalite – Tetra Salt		
	(C)	Forsterite - Hexa Salt		
	(D)	Monticellite - Double Salt		
	(E)	Answer not known		

6.	Nor	mal zoning in plagioclase fel	dspars show	a gradation from	
	(A)	Calcic core to a sodic rim			
	(B)	Sodic core to a calcic rim			
	(C)	Admixing of calcic and soc	lic layers		
1	(D)	Spherulic growth of calcite	and sodic fel	ldspars	
	(E)	Answer not known			
7.		Extinction angle of about 2 xene group minerals?	2° to 10° in cl	haracteristic of v	which of the following
	(A)	Augite	(B)	Aegirine	
	(C)	Hedenbergite	(D)	Diopside	
	(E)	Answer not known			
8.	The	optic sign of orthoclase is			
	(A)	Biaxive +	(B)	Biaxial -	
	(C)	Uniaxial +	(D)	Uniaxial –	
	(E)	Answer not known			
9.	The	structure of leucite at ordina	ıry temperatu	ire is	
	(A)	Monoclinic			
	(B)	Orthorhombic			
	(C)	Tetragonal (Pseudocubic)			
	(D)	Triclinic			
	(E)	Answer not known			
10.		in film of electrically cond mens for SEM analysis, whi		rial is to be coa	ted on the mounted
	(A)	Cu	(B)	Al	
	(C)	Au	(D)	Hg	
	(E)	Answer not known			
AGP	G/202	1	4		

11.	Glos	ssopteris flora corresponds	mainly with —	regime.
	(A)	Cold (glacial) to cool tem	porate	
	(B)	Warm temporate		
	(C)	Moist climate		
	(D)	None of the above		
	(E)	Answer not known		
12.	The	earliest known dendroid g	raptolites were	found in
	(A)	Cambrian	(B)	Ordovician
	(C)	Devonian	(D)	Carboniferous
	(E)	Answer not known		
13.	In G	raptolites the outer layer o	of skeleton, cons	sisting of super imposed Laminae is
	(A)	Bitheca	(B)	Fusellar layer
	(C)	Sicula	(D)	Cortex
	(E)	Answer not known		
14.	The	Benthonic algae Lithothan	nnion ranges fro	om.
	(A)	Cretaceous to Recent	(B)	Ordovician to Jurassic
	(C)	Ordovician	(D)	Jurassic
	(E)	Answer not known		
15.	Pick	out the incorrect pair from	the following	
	(A)	Didymograptus –]	Lower and Midd	lle Ordovician
	(B)	Goniograptus –]	Lower Ordovicia	an distribution of the second
	(C)	Dimorphograptus - 1	Lower Silurian	
	(D)	Acanthograptus – 1	Lower and midd	lle Silurian
	(E)	Answer not known		

16.	The	age of phacops is		
	(A)	Ordovician to Devonian	(B)	Lower Cambrian
	(C)	Upper Cambrian	(D)	Permian
	(E)	Answer not known	10	
		a		
17.		Goniatite type of suture virtually di		
	(A)	Devonian	(B)	Jurassic
	(C)	Cretaceous	(D)	Triassic
	(E)	Answer not known		
18.	Shel	ls having ammonite sutures and hig	ghly o	rnamented shells are common during
	(A)	Triassic	(B)	Jurassic
	(C)	Cretaceous	(D)	Carboniferous
	(E)	Answer not known		
			2.00 2.00 2.00	
19.		volutionary history of Ammonoids, v rian periods	vhich	among the following is not in Devonian
		Agoniatites	(B)	Anarcestes
	(A) V	Gyroceratites	(D)	Lobobactrites
	(C)	Answer not known	(1)	Hobobacarics
	(E)	Answer not known		
20.	Mid-	Palaeozoic ammonoids have septal	necks	s pointing back toward the proto conch,
	a con	ndition termed		
	(A)	Protoconchate		
	(B)	Retro protoconchate		
	(C)	Prosiphonate		
	(D)	Retrosiphonate		
	(E)	Answer not known		

21.	In biotite lamprophyre, the dominant mafic mineral is potassic feldspar, then it is referred as					
	(A)	Vogasite	(B)	Minettes		
X .	(C)	Ijolite	(D)	Kersantite		
	(E)	Answer not known	-,**			
22.	Alka	aline rocks have high concentrat	ion of			
	(AN	Na and K	(B)	Si and Fe		
	(C)	Mg and Mn	(D)	Fe and Mg		
	(E)	Answer not known				
23.	The	chemical composition "KAlSi ₃ O	8" denotes	3	· ·	
	(A)	Kaliophilite	(B)	Albite		
	(C)	Nepheline	(D)	Orthoclase		
	(E)	Answer not known				
24.	Ina	hand specimen, Gabbro and Dic	orite are c	assified on the basis	of	
	(A)	Plagioclase composition	(B)	Color index		
	(C)	Mafic minerals	(D)	Grain size		
	(E)	Answer not known				
25.		orogenic granite associated wi	th piles o	f sediments accumul	ated in a rapidly	
	(A)	Geanticline				
	(B)	Geosyncline				
	(C)	Subsidence				
	(D)	Collision				
	(E)	Answer not known				

20.	1110	voicante equivalent of the prator	ne rock s	Cimico 15
	(A)	Rhyolite	(B)	Dacite
	(C)	Trachyte	(D)	Andesite
	(E)	Answer not known		
27.	Apli	tes is a ————type of text	ure.	
	(A)	Panidiomorphic	(B)	Hypidiomorphic
	(C)	Porphyritic	(D)	Allotriomorphic
	(E)	Answer not known		
28.	Lam	prophyres are rich in		
	(A)	Ferro magnesium silicates		
	(B)	Feldspar and quartz rich fine g	rained	
	(C)	Lime-soda composition		
	(D)	Pottash Feldspar		
	(E)	Answer not known		
29.	In Ig	meous rock, the essential minera	ds are the	e product of
	(A)	Circulating solution		
	(B)	Metamorphism		
	(C)	Weathering		
	(D)	Magmatic crystallisation		
	(E)	Answer not known		
30.	The	Calc – alkaline magmatic rock sı	uito follo.	on plata tectonic catting of
50.				Oceanic rift
	(A) (C)	Continental rift Subduction zone	(B) (D)	Intraplate zone
	(E)	Answer not known	(D)	Instaplase 20116
	(11)	I HISWEL HOURINGWII		

(A) Barite (B) Graphite (C) Magnesite (E) Answer not known Bayer's synthetic Chemical process is associated with	
(E) Answer not known	
32. Bayer's synthetic Chemical process is associated with	
32. Bayer's synthetic Chemical process is associated with	
(A) Extraction of graphite	
(B) Extraction of manganese	
(C) Extraction of metallic aluminium	
(D) Extraction of gold	
(E) Answer not known	
33. Match the following: The Indian origin of manganese ore deformed as:	eposits may be
(a) Hydrothermal deposits 1. Due to chemical precipi	tation
(b) Sedimentary deposits 2. It is formed by magmat	ic hot water
(c) Residual deposits 3. Due to action of under a	ground water
(d) Metasomatic replacement 4. Due to residual concent	ration
(a) (b) (c) (d)	
(A) 3 4 2 1	
(B) 4 3 1 2	
(C)/2 1 4 3	
(D) 4 2 1 3	
(E) Answer not known	

34.	Residual magnetic field following the removal of an external field is called							
	(A)	Chemical Remanent Magnetisation	on					
	(B)	Detrital Remanent Magnetisation	ı ·					
	(C) Isothermal Remanent Magnetisation							
	(D)	Thermo Remanent Magnetisation	L					
	(E)	Answer not known						
35.	Meta	somatic replacement deposits have	been	source of metals like				
	(A)	Tungsten and Uranium	(B)	Garnet and Topaz				
4.4	(C)	Quartz and fluorite	(D)	None of the above				
	(E)	Answer not known						
36.		resultant hydrothermal alteration	produ	ucts of lime stone under mesothermal				
	(A)	Calcite and Epidote	(B)	Dolomites and Siderites				
	(C)	Topaz and Pyrite	(D)	Calcite and Sericite				
	(E)	Answer not known						
37.	Exar	nple for Breccia filling deposits.						
	(I)	Wajrakarur Kimberlite pipe						
	(II)	Singhbhum shear zone						
	(III)	Baryte deposits of Himachal Prac	desh					
	(A)	(I) is correct	(B)	(II) is correct				
	(C)	(I) and (II) are correct	(D)	(III) is correct				
	(E)	Answer not known	·					
38.	Whie	ch one of the following mineral mel	ting p	oint is 630°C?				
	(A)	Aegirine	(B)	Antimony				
	(C)	Cinnabar	(D)	Stibnite				
	(E)	Answer not known						

10

AGPG/2021

39.	High	n iron oxide in a soil will significantl	y	
	(A)	increase reflectance	(B)	decrease reflectance
	(C)	decrease transmittance	(D)	increase brightness
	(E)	Answer not known		
	01			
40.		flowing of water saturated earth by		
	(A)	Mud flow	(B)	Soil creep
	(C)	Solifluction	(D)	Slump
	(E)	Answer not known		
41.	Pick	out the non renewable energy from	the fo	llowing
•••	(A)	Geothermal Energy	(B)	Wind Energy
	(CN	Nuclear Energy	(D)	Solar Energy
	(E)	Answer not known	(1)	Solar Energy
	(11)	AMSWCI HOURHOWN		
42.	Mini	ng and processing of mineral resource	ces ha	ave adverse impact on
	(1)	land		
	(2)	water		
	(3)	air		
	(4)	biological sources		
	(A)	(1), (2) and (3) only	(B)	(2), (3) and (4) only
	(C)	(1), (3) and (4) only	D	(1), (2), (3) and (4)
	(E)	Answer not known		
43.		[18] 20 H (20 H) 2	ig roc	ek formation for extracting the ore or
	econo	omic mineral from the Earth.		
	(A)	Drilling	(B)	Mining
	(C)	Blasting	(D)	Winning
	(E)	Answer not known		

44.	The primary Geochemical prospecting are called	
	(A) The process are mainly associated with supergene a	igents

(A) The process are mainly associated with supergene agents of rock degradation

(B) The process are connected with magmatism as well as the process of metamorphic evolution

(C) Through the evolutionary circuit

(D) Factors influencing chemical dispersion

(E) Answer not known

45. Following are the parameters of the geochemical environment that determine the mineral phases that are stable at a given point of

(A) Pressure and Temperature

(B) Temperature and Chemical components

(C) Chemical components and pressure

(D) Pressure, Temperature and Chemical components

(E) Answer not known

46. Consider the following statement:

I. Chondrite is a group of aerolite meteorites.

II. Chondrite meteorites contain 40% olivine.

(A) Both I and II are True

(B) I is True II is False

(C) I is False II is True

(D) Both I and II are False

(E) Answer not known

47. The elements with same mass number and different number of protons and neutrons are said to be

(A) Isotopes

(B) Isobars

(C) Isotones

(D) Isoelements

(E) Answer not known

48.	Cons	sider the following statement								
	1.	Induced Polarization (IP) is a type of Geophysical electrical method								
	2.	Measurements are made while applying current								
	3.	IP methods are superior to the r	esistivi	ty methods						
	4.	The change of resistivity with ch	ange of	f frequency is called 'frequency effect'						
` .	(A)	1, 2, and 3 are correct 4 is incorre	The said of the sa							
	(B)	B) 1, 3 and 4 are correct 2 is incorrect								
	(C)	1 and 2 are correct 3 and 4 are in								
	(D)	D) 1 and 2 are incorrect 3 and 4 are correct								
	(E)	Answer not known								
49.	Off s	et of beds of one series along a line	e is							
	(A)	Blended unconformity	(B)	Para unconformity						
	(C)	Line of unconformity	(D)	Unequal competence						
*	(E)	Answer not known								
*										
50.	A.Sh	A Sharp contrast in the degree of induration indicates								
	(A)	Fault	(B)	Fracture						
	(C)	Joints	(DV	Unconformity						
	(E)	Answer not known								
51.	,	Ariyalur beds overlying the Trichi								
· · · · · ·	(A)	Off lap	(B)	Inlier						
	(C)	Overlap	(D)	Outlier						
	(E)	Answer not known								
52.	Com	pression joints are seen in the								
	(A)	Sedimentary rocks	(B)	Metamorphic rocks						
	(C)	Igneous rocks	(D)	Meta-sedimentary formations						
6. Tr	(E)	Answer not known								
**										

					1000		
53.	71	the state of the s		SALES NOT SHOW AND ADDRESS OF THE PARTY OF T	AND THE SECOND	C 11	San
7.3	Linnaga	The corre	act etatamant	among	tha	tollor	TITTO
oo.	CHOOSE	CITC COLLC	ect statement	amone	CIIC	TOTTO	W III

- Current ripples can be used to determine top from bottom (A)
- (B) Sole markings are overturned casts on the underside of bed
- (C) Current ripples cannot be used to determine top from bottom
- (D) Sole markings are casts on the upper side of bed
- (E) Answer not known

54. Fault dip towards the master fault, but the displacement on them is down dip

(A) Plunger (B) Radiating normal fault

Antithetic fault

(D) Enechelon fault

(E) Answer not known

- (A) Rootless intrafolial folds
- (B) Intrafolial folds

Kink bands (C)

Monocline (D)

(E). Answer not known

56. The relationship between throw and true displacement in a dip-slip fault, where
$$\alpha$$
 is the dip of the fault

- $\tan \alpha = \frac{\text{throw}}{\text{true displacement}}$ (A)
- $\cot \alpha = \frac{\text{throw}}{\text{true displacement}}$ (C)
- (B) $\cos \alpha = \frac{\text{throw}}{\text{true displacement}}$ (D) $\sin \alpha = \frac{\text{throw}}{\text{true displacement}}$

(E) Answer not known

(A) Sinistral Fault (B) Lateral Fault

Reverse Fault

(D) Normal Fault

(E) Answer not known

58.	The	The displacement of particles at right angles to the time of force							
	(A)	Shear strains	(B)	Compression					
	(C)	Axes of stress	(D)	Normal strain					
	(E)	Answer not known							
59.	Tatro	ot formation belongs to which of the	follo	wing sub-groups?					
	(A)	Lower Siwaliks	(B)	Middle Siwaliks					
	(C)	Upper Siwaliks	(D)	Lower Gondwana					
47 83 Y	(E)	Answer not known							
60.	The p	primates fossil present in the Upper	Siwa	alik are					
	(A)	Macacus and Paleopithicus							
	(B)	Simia and Papio							
	(C)	Felis and Larva							
	(D)	Leptobos and Anoa							
	(E)	Answer not known							
61.		ner stage component rocks shales by of transport and deposition.	and	sandstones suggests a					
	(A)	Fluvial	(B)	Glacial					
	(C)	Fluvioglacial	(D)	Marine					
	(E)	Answer not known							
62.	The "	Variegated series' of Silurian contai	ns the	e lithology of					
	(A)	Limestones	(B)	Shales					
	(C)	Both limestones and shales	(D)	Sandstones					
	(E)	Answer not known							

	of oc	currence of		
	(A)	Limestones	(B)	Diamond
	(C)	Sandstones	(D)	All of the above
	(E)	Answer not known		
,				
64.	Thic	kness of sediments in Kaimur Grou	p is al	lmost
	(A)	1300 – 1500 m	(B)	400 m
	(C)	100 – 300 m	(D)	450 – 550 m
•	(E)	Answer not known		
65.	The	enormous thickness of the Cuddapa	h sed	iments (6300 m) indicates that
	(A)	A rapid and quiet submergence		
	(B)	A slow and distributed type of sub	merg	ence
	(C)	Slow and quiet submergence		
	(D)	None of these are correct		
	(E)	Answer not known		
66.	The	term 'Muth Quartzites' was first us	ed by	
		Colbert	(B)	Pilgrim
	(C)	Stoliczka	(D)	B. Ramarao
	(E)	Answer not known		
67.	Kola	ar Greenstone belt is of an areal ext		
	(A)	(80 × 2 sq km)	(B)	$(75 \times 2.5 \text{ sq km})$
	(C)	$(80 \times 2.5 \text{ sq km})$	(D)	$(75 \times 2 \text{ sq km})$
	(E)	Answer not known		
	V C (0.00			

The Vindhyan system is rich in mineral deposit and economically important because

63.

68.	The	e petrol	logical o	composi	tion of	Deccan basa	lts				
	(A)	vari	es rand	omly							
	(B)	is ur	niform								
	(C)	beco	mes ac	idic tow	ards e	ast					
	(D)	is ur	niform i	n the ce	ntre t	han in peripl	nery				
	(E)			known							
					•						
69.	Mat	ch the	followi	ng - Tin	e and	Rock units		A			
	(a)	Era			1.	stage					
	(b)	Period	d		2.	series					
	(c)	Epoch	1		3.	system					
	(d)	Age			4.	group	•				
		4.5	4.	1.5	(1)						
	(18.	(a)	(b)	(c)	(d)						
	(A)	4	3	2	1						
	(B)	2	1	3	4						
	(C)	1	2	3	4						
	(D)	3	2	.1	4						
	(E)	Answ	er not	known							
							,				
70.	The	sedime yncline	ents fr	om con	tinent	s called mol	lasse is	belong	to —		type of
	(A)	Euras	sian typ	oe .		(B)	Atlant	ic type			
	(C)		esian t			(D)	Africa				
	(E)		er not l					, Po			
									VS. 55	1	× (
1.	Whe	n the w d?	idth of	the val	ley is g	greater than	the widt	h of the i	river, th	an the v	alley is
	(A)	Bad-la	and			(B)	Butte				
	(C)	Stratl	h ·			(D)		d-river			
	(E)	Answ	er not k	nown							

	II.	Volcanic earthquakes are Ear	thquakes	associated with voicanoes				
	III.	Shallow earthquakes originate	e at a dep	th of 30 miles				
	IV.	Tsunami is known as seismog	rams					
	(A)	I, II only	(B)	II, III only				
	(C)	III and IV only	(D)	IV only				
	(E)	Answer not known						
73.	Lava	a of basaltic nature is erupted b	y					
	(A)	Explosive type volcano	(B)	Quiet type volcano				
	(C)	Hawaiian type volcano	(D)	Vesu Vian type Volcano				
	(E)	Answer not known						
74.	Various scales have been proposed to estimate the intensity of Earthquake from the damages caused, and thus,							
	(1)	Richter scale is devised in 12	numbers	with increase in intensity and				
	(2)	Mercall-Scale 0-9 with increa	se in mag	nitude				
	(A)	Statements (1) and (2) are con	rrect					
	(B)	Statements (1) and (2) are inc	correct					
	(C)	Statement (1) is correct and statement (2) is incorrect						
	(D)	Statement (1) is incorrect and	lstatemer	nt (2) is correct				
	(E)	Answer not known						
75.	Acco Afri		which per	riod the pangaea broken into India and				
	(AN	Jurassic	(B)	Cretaceous				
	(C)	Ice age	(D)	Triassic				
	(E)	Answer not known						
ACI	PG/202	21	18	$oldsymbol{eta}$				
AUI	CHAU							

Which of the following statement are wrongly paired?

Elastic rebound theory according to Prof. H.F. Reid

72.

- The main density break (3.36 to 3.87) inside the earth is at 76.
 - (A) 35 kms

60 kms (B)

(C) $80 \mathrm{\ kms}$

100 kms (D)

- Answer not known (E)
- Match the followings: 77.
 - Formation

P-wave velocity (m/s)

- Massive granite (a)
- 1. 800 - 2500
- (b) Weathered granite
- 300 8002.
- Sandstone (c)
- 3. 1500 - 4000

(d) Sand

5000 - 70004.

- (a)
- (b). (c)
- (d) 2

1

- (A) 1
- 3 4
- (B)
- 2 4
- (O)
- 3 3 2
- (D)
- 3
- (E) Answer not known

1

2

- 78. Match the following:
 - Density break (a)
- 150 km depth 1.
- Gravity break (b)
- 2. 80 km depth
- Repetiti discontinuity 3. (c)

1

Metallic nickel and Iron

Nife (d)

950 km depth 4.

- (a)
- (b) (c)
 - (d)

1

3

4

1

- (A) 4
- 3 2
- (B)
- 4
- (C) 3
- 2 1
- (D)
- 4
 - 3
- (E) Answer not known

- 79. High temperature changes which takes place along the immediate contacts of Magma with country rock is called as
 - (A) Pneumatolytic metamorphism
 - (B) Cataclastic metamorphism
 - (C) Pyro metamorphism
 - (D) Load metamorphism
 - (E) Answer not known
- 80. The Calcareous schists consists of
 - (A) Calcite Epidote Tremolite Quartz
 - (B) Hornblende Chlorite Allamanda
 - (C) Hornblende Albite Epidote Allamanda
 - (D) Quartz Albite Microclines
 - (E) Answer not known
- 81. The directed pressure acts generally in a vertical direction and the process of change in the structure of the rock is referred as
 - (A) Rock flowage
 - (B) Dynamothermal metamorphism
 - (C) Metasomatism
 - (D) Load metamorphism
 - (E) Answer not known
- 82. Identify the correct sequence of increasing grade of metamorphic zones
 - (A) Chlorite Biotite Garnet Kyanite Sillimanite
 - (B) Chlorite Biotite Garnet Sillimanite Kyanite
 - (C) Chlorite Biotite Sillimanite Kyanite Garnet
 - (D) Chlorite Biotite Kyanite Garnet Sillimanite
 - (E) Answer not known

.00.	. 116	term maconumite refers to		
	(A)	Ore of columbium	(B)) Placer sands
	(C)	Flexible sand stone	(D)	Calcite in the stalagmite
	(E)	Answer not known		
84.	Gra	ywackes are mostly — ir	ı origi	n.
	(A)	Marine	(B)	Flurial
	(C)	Glacial	(D)	Estuarine
	(E)	Answer not known		
			7	
85.	Deco	omposition of the rocks is more activ	ve in	
	(A)	Higher elevated areas		
	(B)	Colder regions of the earth surface	e	
	(C)	Low-lying areas		
	(D)	Mainly in the Drier areas		
	(E)	Answer not known		
86.		ediment grain size analysis, if the c requency curve is said to be	entra	l portion is better sorted than the tails
	(A)	Positively skewed	(B)	Leptokurtic
	(C)	Platykurtic	(D)	Negatively skewed
	(E)	Answer not known		
87.	Tillit	e is a kind of		
	(A)	Ortho conglomerate	(B)	Para conglomerate
	(C)	Oligomictic conglomerate	(D)	Conglomerite
	(E)	Answer not known		
THE PERSON NAMED IN	7 800			

	(A)	Chloride – Bicarbonate ratio	
	(B)	Chloride ratio	
	(C)	Bicarbonate ratio	
194	(D)	Nitrate ratio	
	(E)	Answer not known	
89.	Yield	ld tests are known as	
	(A)	The test may be depressed to an a the subsoil	mount - equal to the safe working lead of
	(B)	Test may be performed to get an ide	ea of the probable yield of the well
	(C)	Test may be well is depressed by an	less than the safe working lead for subsoil
	(D)	If the water level inside the rises from	om time to time draw down at any time
	(E)	Answer not known	
90.	Rota	ary Drilling is used to drill	— depth.
	(A)	Smaller	(B) Greater
	(C)	Intermediate	(D) Very greater
	(E)	Answer not known	
91.	In.w	which method during the time of drilli	ng, the casing also done?
	(A)	Cable-tool-percussion method	
*	(B)	Air rotary method	
	(C)	Rotary cum Hammer drilling method	od
	(D)	Rotary drilling method	
. ,	(E)	Answer not known	
National States	100		

How to identify the sea water intrusion?

88.

92.	In which type of formation, the capillary rise will be high								
	(A)	Gravel	(B)	Medium sand					
	(C)	Loam	(D)	Clay					
	(E)	Answer not known							
93.	Seco	ndary storage spaces may be resulte	ed due	o to					
	(A)	Diastrophism	(B)	Removal of overburden					
	(C)	Reduction in volume of rocks	(D)	All of the above					
	(E)	Answer not known							
94.	New	water of magmatic or cosmic origin	is kn	own as					
	(A)	Juvenile water	(B)	Plutonic water					
	(C)	Connate water	(D)	Metamorphic water					
	(E)	Answer not known							
95.	The	water in the zone of aeration is							
	(A)	Vadose water	(B)	Phreatic water					
	(C)	Fringe water	(D)	Juvenile water					
	(E)	Answer not known	1,						
96.	Water entrapped in sediment is called,								
	(A)	Meteoric water	(B)	Connate water					
	(C)	Juvenile water	(D)	Plutonic water					
	(E)	Answer not known							
	- 50								

97.		ne Bragg's law which states that $n \lambda = 2d \sin \theta$, the glancing angle is given by the of the following symbols?
	(A)	λ (B) θ
	(C)	d (D) η
	(E)	Answer not known
98	Pyri	te is the type mineral for which of the following crystal classes?
	(A)	Tetrahedral class of Isometric system
	(B)	Plagiohedral class of Isometric system
	(C)	Pyritohedral class of Isometric system
	(D)	Normal class of Tetragonal system
	(E)	Answer not known
9.	In st	ereographic projection, the plane of projection is taken as
	(A)	Equitorial plane of sphere
	(B)	Southern hemisphere
	(C)	Coinciding point of centre of sphere and centre of crystal
* * *	(D)	Horizontal plane tangent to North Pole of sphere
A.	(E)	Answer not known
.00.	Chal	copyrite is the type mineral for which of the following crystal classes?
	(A)	Normal class of Tetragonal System
	(B)	Sphenoidal class of Tetragonal System
	(C)	Tripyramidal class of Tetragonal System
	(D)	Hemimorphic class of Tetragonal System
	(E)	Answer not known
.01.	Ullm	anite is the type mineral for which of the following crystal classes?
	(A)	Tetartohedral class of Isometric System
	(B)	Tetrahedral class of Isometric System
	(C)	Plagiohedral class of Isometric System
	(D)	Sphenoidal class of Tetragonal System
	(E)	Answer not known

102.	Diop	oside and Hedenbergite		
	(A)	are Isomorphous mixtures	*	
	(B)	are end members of solid solution	n serie	s
	(C)	exhibit pseudomorphism		
	(D)	are solid solution series		
	(E)	Answer not known		
103.	The	cleavage angles in Amphibole grou	p of m	inerals are in general
	(A)	87° and 93°	(B)	56° and 124°
	(C)	40° and 140°	(D)	60° and 120°
•	(E)	Answer not known		A .
104.	Cum	nmingtonite crystallizes in which of	the fo	llowing crystal systems?.
	(A)	Orthorhombic	(B)	Monoclinic
	(C)	Triclinic	(D)	Tetragonal
	(E)	Answer not known		
105.	Whic	ch of the following pyroxene group i	minera	al is optically negative?
	(A)	Hypersthene	(B)	Enstatite
	(C)	Diopside	(D)	Augite
	(E)	Answer not known		
106.	Whic	ch of the following Feldspathoidal n	ninera	l contain Cl in its composition?
	(A)	Leucite	(B)	Nepheline
	(C)	Sodalite	(D)	Melitite
	(E)	Answer not known		
07.	The	maximum range of extinction angle	for A	northite on Albite twins are
	(A)	51° to 70°	(B)	39° to 51°
	(C)	28° to 39°	(D)	13° to 28°
	(E)	Answer not known	(
	The state of the state of			

108.	Thin sections of larger benthic for aminifera are done to study							
	(A)	External morphological features						
	(B)	Internal morphological features						
	(C)	Wall Structure						
	(D)	Ornamentation						
	(E)	Answer not known						
	(0.1							
109.		FSST is characterized by derived to previously deposited	erresti	rial fossils and reworks	ed microfossils of			
	(AV	HST	(B)	LST				
	(C)	TST	(D)	HST and LST				
	(E)	Answer not known	(-)					
	(-)		•					
110.	The	lower and upper gondwanas are ser	arate	d by				
	(A)	Panchet and Mahadeva series						
	(B)	Damuda and Panchet series						
	(C)	Mahadeva and Rajmahal series						
	(D)	Damuda and Mahadeva series						
	(E)	Answer not known						
111.		stem thickness of the plant pentoxy						
	(A)	5 cm to 8 cm	(B)	6 cm to 10 cm				
	(C)	1 cm to 3 cm	(D)	1 cm to 12 cm				
	(E)	Answer not known						
112.	Cyca	doplyta is the name of						
112.	(A)	Phylum	(B)	Class				
	(C)	Sub class	(D)	Order				
	(E)	Answer not known	(-)					
	/							

26

AGPG/2021

113.	Cho	ose the correct pair fr	om the following	g					
	(A)	Monograptus -	Ordovician			• •			
	(B)	Cyrtograptus -	Upper Ordovic	ian					
	(C)	Rastites -	Lower Ordovic	ian					
	(D)	Retiolites -	Lower and Mid	ldle S	Silurian				
	(E)	Answer not known							
114	B								
114.	Rast	crites were present du							
	(A)	Silurian		(B)	Devonian				
	(C)	Carboniferous		(D)	Cambrian *				
	(E)	Answer not known							
115.	In Trilobites the segments of the thorax and the pygidium can be differentiated by								
	(A)								
	(B)	(B) Their movable and immovable character							
	(C)	The nature of the fu	ırrow						
	(D)	The total number of	f segment						
	(E)	Answer not known							
	m),								
116.	The facial suture that starts from genal angle and ends at anterior lateral margin of cephalon is designated as								
	(A)	Hypoparian type		(B)	Opisthoparian type				
	(C)	Proparian type		(D)	Gonatoparian type				
	(E)	Answer not known			Sometoparian type				
117.	The o	class trilobite were —	forms.						
	(A)	Living forms		(B)	Extinct forms				
	(C)	Both living and exti	net forms	(D) ·	None of the above				
	(E)	Answer not known							

110.	vari	ation diagram is constructed by		
	(A)	Silica percentage vs other oxides	3	
	(B)	Silica percentage vs other miner	als	
	(C)	Minerals vs Temperature		
	(D)	Minerals vs liquid		
4	(E)	Answer not known		
119.	In a form		40% A	and 30% P then what type of rock i
	(A)	Granite	(B)	Anorthosite
	(C)	Gabbro	(D)	Monozite
	(E)	Answer not known		
120.	The i	incongruent melting point in forst	erite — :	silica system is
	(A)	1457°C	(B N	1557°C
	(C)	1567°C	(D)	1467°C
	(E)	Answer not known	(1)	140.
			.,	
121.	What	t are the end members of the isom	orphou	s series of plagioclase?
	(A)	Nepheline and sodalite	(B)	Albite and Anorthite
	(C)	Orthoclase and plagioclase	(D)	Pyroxene and amphibole
	(E)	Answer not known		
122.	The	origin of anorthosite is		
	(A)	Magmatic and metamorphic		
	(B)	Magmatic origin		
	(C) (D)	Metamorphic origin Residual and magmatic		
	(E)	Answer not known		
	(11)	THIS WELL HOU KHOW H		

123.	Consider the following statements:									
	(a)	In granite industries, black granite is dolerite								
	(b)	But dolerite is basic igneous rock, granite is acid igneous rock								
	(A)	Both (a) and (b) are true								
	(B)	(a) is false and (b) is true								
	-(C)	Both (a) and (b) are false								
	(D)	(a) is true and (b) is false								
	(E)	Answer not known								
•										
	(D)									
124.		The rock showing graphic texture is								
	(A)	Diorite	(B)	Gabbro						
	(C)	Dolerite	(D)	Granite						
	(E).	Answer not known								
25.	The IUGs classification is based on									
	(A)	Color index								
	(B)	Chemical composition of mineral	ls							
	(C) Mineral composition and percentage of five minerals									
	(D)	Grain size								
	(E)	Answer not known								
26.	Glassy rock of acidic composition is									
	(A)	Pitchstone	(B)	Pumice						
,	(C)	Obsidian	(D)	Oceanite						
	(E)	Answer not known								
			2							
27.	Rock	s composed entirely of glassy mate	erials a	re called						
	(A) Holocrystalline (B) Holohyaline									
	(C)	Merocrystalline	(D)	Microcrystalline						
	(E)	Answer not known	(-)	2,2101001 y statiffic						

128.	The coarser intergrowth of quartz and alkali feldspar may give rise to the ———————————————————————————————————										
	(A)	Graphic texture	(B)	Porphyritic texture							
	(C)	Prikilitic texture	(D)	Ophitic texture							
	(E)	Answer not known									
129.	The reservoir rock is the material in which Oil and Gas are found, consists chiefly of										
	(A)	Sandstone, limestone, and dolomi	tes								
	(B)	Arkose, grit, gravel									
	(C)	Conglomerate, clay, calcite	•	H TO THE STATE OF							
	(D)	Clay, calcite, conglomerate									
	(E)	Answer not known									
130.	In In	adia lignite deposits are found to occ	cur du	ring							
	(A)	Eocene to Pliocene									
	(B)	Cambrian to ordovician									
	(C)	Jurassic to cretaceous									
	(D)	Pre-Cambrian									
	(E)	Answer not known									
101	, G			-1.4 :-41:1	· 1-1 6 4						
151.		stituent of coal that is glassy looking ed as	ıg, bri	gnt, jetnke with concho.	dai fracture is						
	(A)	Durain	(B)	Anthraxylon							
	(C)	Clarain	(D)	Fusain							
v. 1.	(E)	Answer not known									
132.	Which of these is called as "Blue Asbestos"										
	(A)	Amosite	(B)	Crocidolite							
	(C)	Actinolite	(D)	Tremolite							
	(E)	Answer not known	(2)	A A A							
	(15)	ZHISWEI HOU KHOWH									
			100								

133.	Mat	Match the following basis of manganese contents:								
	(a)	Cher	nical gra	ade		1.	Less than 10% of Mn			
	(b)	Mn	re grade	é		2.	35 – 45% of Mn			
	(c)	Ferr	uginous	Mn gra	de	3.	10 – 35% of Mn			
	(d)				ore grade	4.	82 – 87% Mn			
		> .	2.							
	CAN	(a) 1	(b)	(c)	(d)			and the Armer Server		
	(A) (B)	2	3	2 4	3 1					
	(C)	3	1	2	4					
	(D)	4	2	3	1	Value (
	(E)		wer not		1					
	· (13)	Alls	wer not	KHOWH						
134.	The	inclin	ation wi	thin an	ore shoot v	ein is ca	lled the			
	(A)	Dip				(B)	Rake			
	(C)	Slop	ıe.			(D)	Ore run			
	(E)		wer not	known		(B)	Ole run			
	(1)	11113	wer not	MOWII						
135.	Wha	t is th	e percer	ntage of	limestone	used for	cement Industries in Indi	a?		
	(A)	95%				(B)	70%			
	(0)	84%				(D)	60%			
	(E)		wer not	known		(2)				
	(-)									
136.	"Sele	enite"	is a vari	ety of						
	(A)	Ilme	nite			(B)	Garnet			
	(C)	Gyps	sum			(D)	Zircon			
	(E)		wer not l	known						
						1 - 4 7 1 2 4				
137.			depos	sits are	the source	of metal	s like niobium, rubidium,	tin, tungster		
	and	uraniu								
	(A)	Mag	matic			(B)	Metamorphic			
- S	(C)	Meta	somatic	replace	ement	(D)	Residual			
	(E)		ver not l							
β						31		AGPG/2021		

[Turn over

	and			are original cavities of Hydrothermal ore forming					
	processes.								
(A)	Saddle reefs								
(B)				lapse breccias					
(C)	Solution cave								
(D)	Pore spaces a		lding	planes					
(E)	Answer not k	nown							
Mat	ch the List I wi	th List	II an	d select your answer using the codes given below:					
	List I			List II					
(a)	Digboi		1.	Barites					
(b)	Jadaguda		2.	Coal fields					
(c)	Mangampetta		3.	Oil fields					
(d)	Jharia		4.	Uranium deposits					
(u)	onana		7.	,					
	(a) (b)	(c)	(d)						
(A)	3 4	1	2						
(B)	3 4	2	1						
: (C)	3 2	4	1						
(D)	4 3	1	2 .						
(E)	Answer not k	nown							
Wh	ab of the follow	ina ia	inaam	not anoway					
	ich of the follow								
(A)				Bauxite, Chromite, Chalcopyrite					
(B)				are Asbestos, Corundum, Diamond					
(C)				Feldspar, Garnet, Vermiculite					
(D)	Kyanite and refractories	l sillin	nanite	e are in the manufacture of high temperature					
(E)	Answer not k	nown							
Sha	pe of an object i	in an ir	nage i	is represented as					
(A)	Geometric for			(B) Relief displacement					
(C)	Parallax			(D) Linear form					
10 min 1/4 min	Laranax			(D) Dincal Ioini					

142.		at type of technique is adopted osits?	d for be	dded banded, and vein type
	(A)	Bulk Sampling		
	(B)	Coning of Quartering		
1 × .	(C)	Grab Sampling		
	(D)	Channelling of Grooving		
	(E)	Answer not known		
143.	Unia	axial compressive strength of Ign	eous rocl	k "Basalt" ranges from
	(A)	1500 – 3500	(B)	1000 – 2500
	(C)	1500 – 2500	(D)	1500 – 3000
	(E)	Answer not known		
144.	Unia	ixial compressive strength of met	amorphi	c rock "Marble" ranges from
	(A)	500 - 2500	(B)	700 – 2000
	(C)	1500 – 3000	(D)	500 - 2000
	(E)	Answer not known		\$ ±
145.	The	Jawahar Tunnel on the National	Highwa	y in Jammu and Kashmir is a
	(A)	Single Tube Tunnel	(B)	Single Track Tunnel
	(C)	Double Tube Tunnel	(D)	Double Track Tunnel
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(E)	Answer not known		
146.	Whic	h one of the following is not an e	example	of concrete dam?
	(A)	Gravity Dam	(B)	Buttress Dam
	(C)	Composite Dam	(D)	Arch Dam

(E)

Answer not known

mineral

- 147. The scintillation counters employ certain substances like zinc sulphide or thallium activated sodium iodide crystals, which emit visible light when struck by α, β, γ radiations. Such substances are known as
 - (A) Cluckers

(B) Photo amplifiers

(C) Luminous

(D) Phosphors

- (E) Answer not known
- 148. Seismic reflection method is commonly and successfully employed for
 - (A) Placed along selected points at different distance
 - (B) Waves travelling horizontally
 - (C) Oil exploration and also for subsurface geology
 - (D) Low velocity medium is encountered
 - (E) Answer not known
- 149. The electrical method that involves measuring the potential between the potential electrodes for different electrode spacing ('a') without any current input into the ground is
 - (A) Self-potential method
 - (B) Surface electrical prospecting
 - (C) Electrical resistivity method
 - (D) Well-logging technique
 - (E) Answer not known
- 150. Pick out the correct method from the following

(A)
$$\rho_1 > \rho_2 < \rho_3 - Q$$
 type

(B)
$$\rho_1 < \rho_2 < \rho_3 - H$$
 type

(C)
$$\rho_1 < \rho_2 > \rho_3 - K$$
 type

(D)
$$\rho_1 > \rho_2 > \rho_3 - A$$
 type

(E) Answer not known

- 151. In a cooling lava, dikes and sills, a uniform tension may develop in the plane parallel to the contacts and thus, result
 - (A) Columnar joints

(B) Release joints

(C) Extension joints

(D) Dip joints

- (E) Answer not known
- 152. Microbreccia, can also be called as
 - (A) Mylonite

(B) Silicification

(C) Silicken sides

(D) Gouge

- (E) Answer not known
- 153. The down throw block is topographically higher than the up throw block indicate
 - (A) Thrust fault

(B) Composite fault scrap

(C) Fault scrap

(D) Fault-line scarp

- (E) Answer not known
- 154. Anticline and dome folds form oil-traps in
 - (A) Bombay High, Maharastra
- (B) Digboi, Assam
- (C) Cauvery Basin, Tamil Nadu
- (D) Mahanadi Basin, Odisha

- (E) Answer not known
- 155. Match the following and choose the correct answer:
 - (a)

1. Concealed fault

(p) -3-3-

2. Possible fault

(c) 11111

3. Normal fault-with down thrown block

(d) NANA

- 4. Thrust on up thrown block
- (a) (b) (c) (d)
- (A) 1 2 3 4
- (B) 2 1 4 3
- (C) 3 2 4 1
- (D) 2 3 1 4
- (E) Answer not known

	steep	per (or) gentler than that of adjacent	beds	are called						
	(A)	Disharmonic bands	(B)	Monocline and terrace						
	(C)	Kink bands	(D)	Arch bend						
+	(E)	Answer not known								
157.		rallel or concentric fold maintain sa loped under compression is called as		ayer thickness throughout the fold and						
	(A)	Flexural slip fold	(B)	Oblique shear fold						
	(C)	Kinking fold	(D)	Buckling fold						
	(E)	Answer not known								
158.	Tf th	o orientation of the principal stress	270	s X, Y and Z have changed during the						
100.		mation, the process is known as	, and	71, 1 and 2 have changed during the						
	(A)	Axial strain	(B)	Pure shear						
	(C)	Simple shear	(D)	Triaxial stress						
1. 1. 34 1.	(E)	Answer not known								
159.	The	symbol /sign given below represents	$Q[\sigma_2$]						
	(A)	Greatest principal stress axis								
1.1	(B)	Intermediate principal stress axis								
	(C)	Greatest principal strain axis								
	(D)	Intermediate principal strain axis								
	(E)	Answer not known								
160.	The tangential component is generally called									
	(A)	Tension	(B)	Shear						
	(C)	Compression	(D)	Couple						
	(E)	Answer not known								

156. Narrow bands with few inches (or) few feet wide, in which beds assume a dip that is

161.	The	age of the productus shale is		
	(A)	Carboniferous	(B)	Permo-Carboniferous
	(C)	Permian	(D)	Permo-Triassic
	(E)	Answer not known		
162.	The I	Fenestella shales of spiti forms part	of	
0	(A)	Parahio series	(B)	Po series
	(C)	Lipak series	(D)	Neobolus beds
	(E)	Answer not known		
163.	Unia	series belong to which of the follow	ing sı	ub-groups?
	(A)	Lower Gondwana	(B)	Upper Gondwana
	(C)	Middle Gondwana	(D)	Upper Cretaceous
	(E)	Answer not known		
164.	The r	name Gondwana is derived from the	King	gdom of the 'Gonds' a great and ancient
		who still inhabit from		
	(A)	Maharashtra	(B)	Madhya Pradesh
	(C)	Uttar Pradesh	(D)	Himachal Pradesh
	(E)	Answer not known		
			18 - 1 - 2 - 1 - 2 - 1 - 2	
165.	The o	dolerite dykes intrusive into the L	ower	Gondwanas in the Coal-fields of the
	Centi	ral Provinces are probably related to	the	
	(A)	Plutonic rocks	(B)	Shield areas
	(C)	Archaean rocks	(D)	Deccan traps
	(E)	Answer not known		

166. The Chitradurga-Gadag superbelt is of a linear extent of how many k				r extent of how many kilometers?				
	(A)	300 km	(B)	400 km				
	(C)	200 km	(D)	450 km				
	(E)	Answer not known						
167.	The l	ithology of Niniyur stage are						
*	(A)	Grit and Conglomerate	(B)	Clays and Grit				
	(C)	Sands and Clays	(D)	Limestones and Sandstones				
	(E)	Answer not known						
168.	Geole	ogical age of the rocks of Niniyur sta	ige is	from				
	(A) Cenomanian to Albian							
	(B) Turonian to Cenomanian							
	(C) Senonian to Turonian							
	(D)	(D) Danian to Maestrichtian						
	(E)	Answer not known						
169.	The	cretaceous formation of Trichinopoly	most	ly rest over a platform of				
	(A)	Mesozoic era	(B)	Archaean age				
	(C)	Precambrian age	(D)	Tertiary age				
	(E)	Answer not known						
170.	The 'Danian age' is inferred for the Deccan trap based on the presence of							
	beds	in the interstratification of a few flo	ows of					
70	(A)	Morgania potamides	(B)	Turritella				
	(C)	Cardita beaumonti	(D)	Hemitoma				
	(E)	Answer not known						

171.	Sub	merged equivalents of alluvial fans			
	(A)	Sloughs	(B)	Wadies	
	(C)	Deltas	(D)	Pediment	×
	(E)	Answer not known			
172.	Com	pound coasts reflect the effects of			
	(A)	Coastal emergence			
	(B)	Coastal submergence			
	(C)	Coastal erosion			
	(D)	Both emergence and submergence			
	(E)	Answer not known			
173.		th', 'Hog-back', 'Cuesta' and Butte ar	re lar	nd forms associated with,	
	(A)	Ideal fluvial cycle in Arid region			
	(B)	Ideal fluvial cycle in Humid region			
	(C)	Ideal fluvial cycle in Youth stage			
	(D)	Ideal fluvial cycle in Old stage			
	(E)	Answer not known			
					1.00 mg
174.	_	——— is a big dome-shaped, steep-s	sided	l, bare on top or bald rock outcroppi	ng
		made of granite or hard rocks.			6
	(A)	Bornhardt	(B)	Butte,	
	(C)	Monadnock	(D)	Cuesta	
	(E)	Answer not known			
175.	Explo	osive type volcano, generally erupts (the la	ava of ——— nature.	
	(A)		(B)	Basic	
	(C)	Intermediate	(D)	Ultra basic	
	(E)	Answer not known			

176.	According Wegener the continental drift was caused by the							
	(A)	Differential gravitational f	orces					
	(B)	Equitorial forces						
	(C)	Polar Wandering forces						
	(D)	Magnetic forces						
	(E)	Answer not known						
177.	Choo	ose the correct statement						
	(A)	(A) The crust is spreading apart along the right						
	(B)	(B) The sea floor spreading occurs basaltic lava						
	(C)	Due to sea floor spreading	a new oceanic crust is formed					
	(D)	All are correct						
	(E)	Answer not known						
178.	Acco	rding Wegener, the Himalay	van Alpine chain of mountain was formed due to					
	(A)	West-ward force	(B) North-ward force					
	(C)	South-ward force	(D) Equator-ward force					
	(E)	Answer not known						
179.	Axia	Axial right is identified with						
	(A)	Active sea floor spreading						
	(B)	Isostasy						
	(C)	Active Valcano						
	(D)	Continental motion						
	(E)	Answer not known						
180.	Whi	ch of the following mineral c	annot be dated using Potassium-Argon method?					
	(A)	Biotite	(B) Hornblende					
	(C)	Plagioclase	(D) Orthoclase					
	(E)	Answer not known						

181.	The	circular orbits of the planets forming	ng clo	uds is due to					
	(A)	Gravity	(B)	Collisions					
	(C)	Angular momentum	(D)	Tidal effect					
	(E)	Answer not known							
182.	The term Auto metamorphism is								
	(A)	(A) The alteration of an igneous rock by its own residual liquid							
	(B)	The alteration of sedimentary rock							
	(C)	Alteration of metamorphic rocks b	y owi	n residual liquid					
	(D)	The alteration of both sedimentar	y and	metamorphic rock					
	(E)	Answer not known							
183.	The effect of highest degree of heat possible without fusion under dry condition is called								
	(A)	Contact metamorphism							
	(B)	Pyro metamorphism							
	(C)	Optalic metamorphism							
	(D)	Pneumatolytic metamorphism							
	(E)	Answer not known							
184.	From	the following rocks, which is chem	ically	equivalent to basalt					
	(A)	Eclogite	(B)	Amphibolite					
	(C)	Hornfels	(D)	Serpentinite					
*,	(E)	Answer not known							
185.		has supplemented the zone concept	by th						
	(A)	Fermor	(B)	Eskola					
	(C)	Van Hise	(D)	Grubenmann's					
	(E)	Answer not known							

186.	The l	linear metamorphosed tectonized se	dime	ntary trough which are ter	med as
	(A)	Geosyncline	(B)	Basin	
	(C)	Embayments	(D)	Trough	
	(E)	Answer not known	*		
107	N C(7		lian and baseb sands on th	o basis of
187.		Carthy (1935) discriminated between	i aeo	man and beach sands on the	le basis of
	(A)	Grain size			
	(B)	Roundness			
	(C)	Sorting			•
	(D)	Mutual arrangements	17.6		
	(E)	Answer not known			
188.	Whic	ch is belongs to evaporite type of roc	k?		
	(A)	Chert	(B)	Anhydrite	
	(C)	Kankar	(D)	Chalk	
	(E)	Answer not known	(-)		
	(11)	IIIOWOI IOO KIIOWII			
189.	Choo	se the correct one formed by residua	ıl dep	oosit	
	(A)	Coal	(B)	Gypsum	
	(C)	Terra rosa	(D)	Shale	
	(E)	Answer not known			
			*		
190.	Arko	se is derived from the disintegration	of		
	(A)	Granite	(B)	Carbonatite	
	(C)	Limestone	(D)	Argillaceous	
	(E)	Answer not known			

191.	Which phosphatic deposit is directly organic origin?							
	(A)	Guano	(B)	Greywacke				
	(C)	Ganister	(D)	Shale				
	(E)	Answer not known						
192.	Whi	Which of the following field data can be interpreted using Tagg's method?						
	(A)	Self potential	(B)	Resistivity				
	(C)	Electromagnetic	(D)	Induced polarisation				
	(E)	Answer not known						
193.	The	electrical resistivity metho in semi-log paper.	d, the res	sistance values are plotted against				
	(A)	Current	(B)	Distance				
	(C)	Time	(D)	Depth				
	(E)	Answer not known						
194.	Tf+h	If the salt index is negative for water sample then the sample is suitable for						
101.		(A) Unsuitable for industrial, irrigation and drinking						
	(B)	Industrial	igation and	urmanig				
	(C)	Irrigation						
	(D)	Drinking						
	(E)	Answer not known						
	(2)	ZAMOWEL MOUNTAIN						
195.	Which of the following are the sources of manganese (Mn) in ground water?							
	(A)	Clay and limestone						
	(B)	Igneous rocks						
	(C)	Metamorphic and Sedimentary rocks with biotite, amphibole and hornblende						
	(D)	Igneous rocks with muscovite	e, chert and	feldspars				
	(E)	Answer not known						

196.	The two uniform sieved sands are mixed in varying proportions, then the hydraulic conductivity is ———————————————————————————————————						
	(A)	Less	(B)	Greater			
	(C)	Equal	(D)	Varying			
	(E)	Answer not known					
197.	Grou	und water movement is governed by					
	(A) Hydraulic conductivity of an aquifer						
	(B)	Hydraulic gradient		[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2			
	(C)	Storage capacity of an aquifer					
	(D)	Hydraulic conductivity and gradie	nt of	aquifer			
	(E)	Answer not known					
198.	Port	ion of runoff contributed by direct p	recipi	tation on the stream itself is called			
	(A)	Depression storage	(B)	Channel precipitation			
	(C)	Base flow	(D)	Effluent flow			
	(E)	Answer not known					
199.	In w	hich of the following sediments the o	capill	ary rise is maximum?			
	(A)	Coarse sand	(B)	Medium sand			
	(C)	Loam	(D)	Clay			
Tangka Tangka	(E)	Answer not known					
200.	The	term kinematic porosity is also calle	d as				
	(A)	Primary porosity	(B)	Secondary porosity			
	(C)	Effective porosity	(D)	Unconnected pores			
	(E)	Answer not known					
			Y S				

AGPG/2021 48